D

Diffugen

DiffuGen is an advanced local image generation tool that integrates the MCP protocol, supports multiple AI models (including the Flux and Stable Diffusion series), and can directly generate high-quality images in the development environment. It provides flexible configuration options, multi-GPU support, and can be integrated with multiple IDEs through the MCP protocol. It also provides an OpenAPI interface for external calls.
2.5 points
28

Introduction

DiffuGen is an image generation tool based on AI technology. It supports multiple models and can quickly generate high-quality images.

Main Features

DiffuGen integrates the latest AI image generation technology and supports multi-model switching. Users can select different models for image generation according to their needs. Its interface is simple and intuitive, and the operation is convenient, making it suitable for users of all types.
Multi-model SupportIt has multiple built-in AI image generation models, including Stable Diffusion and Flux, to meet the needs of different scenarios.
IDE IntegrationIt seamlessly integrates into mainstream development environments, providing unified interfaces and configuration management.
API SupportIt provides a rich set of API interfaces, facilitating developers to conduct secondary development and expand functions.
Parameter ControlIt has detailed and adjustable generation parameters, including width, height, model selection, etc., to meet personalized needs.
Installation
Environment Configuration
Start Generation
What are the differences between different models?
Can it be used without a GPU?
How to improve the quality of generated images?
Official DocumentationDetailed usage guides and technical documents
GitHub RepositoryOpen-source projects and community contributions
Technical SupportContact the technical support team
Installation
Copy the following command to your Client for configuration
{
  "mcpServers": {
    "diffugen": {
      "command": "/home/cloudwerxlab/Desktop/Servers/MCP/Tools/DiffuGen/diffugen.sh",
      "args": [],
      "env": {
        "CUDA_VISIBLE_DEVICES": "0",
        "SD_CPP_PATH": "path/to/stable-diffusion.cpp",
        "default_model": "flux-schnell"
      },
      "resources": {
        "models_dir": "path/to/stable-diffusion.cpp/models",
        "output_dir": "path/to/outputs",
        "vram_usage": "adaptive"
      },
      "metadata": {
        "name": "DiffuGen",
        "version": "1.0",
        "description": "Your AI art studio embedded directly in code. Generate, iterate, and perfect visual concepts through this powerful MCP server for Cursor, Windsurf, and other compatible IDEs, utilizing cutting-edge Flux and Stable Diffusion models without disrupting your development process.",
        "author": "CLOUDWERX LAB",
        "homepage": "https://github.com/CLOUDWERX-DEV/diffugen",
        "usage": "Generate images using two primary methods:\n1. Standard generation: 'generate an image of [description]' with optional parameters:\n   - model: Choose from flux-schnell (default), flux-dev, sdxl, sd3, sd15\n   - dimensions: width and height (default: 512x512)\n   - steps: Number of diffusion steps (default: 20, lower for faster generation)\n   - cfg_scale: Guidance scale (default: 7.0, lower for more creative freedom)\n   - seed: For reproducible results (-1 for random)\n   - sampling_method: euler, euler_a (default), heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, lcm\n   - negative_prompt: Specify elements to avoid in the image\n2. Quick Flux generation: 'generate a flux image of [description]' for faster results with fewer steps (default: 4)"
      },
      "cursorOptions": {
        "autoApprove": true,
        "category": "Image Generation",
        "icon": "🖼️",
        "displayName": "DiffuGen"
      },
      "windsurfOptions": {
        "displayName": "DiffuGen",
        "icon": "🖼️",
        "category": "Creative Tools"
      },
      "default_params": {
        "steps": {
          "flux-schnell": 8,
          "flux-dev": 20,
          "sdxl": 20,
          "sd3": 20,
          "sd15": 20
        },
        "cfg_scale": {
          "flux-schnell": 1.0,
          "flux-dev": 1.0,
          "sdxl": 7.0,
          "sd3": 7.0, 
          "sd15": 7.0
        },
        "sampling_method": {
          "flux-schnell": "euler",
          "flux-dev": "euler",
          "sdxl": "euler",
          "sd3": "euler",
          "sd15": "euler"
        }
      }
    }
  }
}
Note: Your key is sensitive information, do not share it with anyone.
S
Search1api
The Search1API MCP Server is a server based on the Model Context Protocol (MCP), providing search and crawling functions, and supporting multiple search services and tools.
TypeScript
336
4 points
D
Duckduckgo MCP Server
Certified
The DuckDuckGo Search MCP Server provides web search and content scraping services for LLMs such as Claude.
Python
823
4.3 points
V
Video Editing MCP
Video Editor MCP is a video editing server that provides video upload, search, generation, and editing functions, supporting operations through the LLM and Video Jungle platforms.
Python
271
4 points
M
MCP Alchemy
Certified
MCP Alchemy is a tool that connects Claude Desktop to multiple databases, supporting SQL queries, database structure analysis, and data report generation.
Python
317
4.2 points
P
Postgresql MCP
A PostgreSQL database MCP service based on the FastMCP library, providing CRUD operations, schema inspection, and custom SQL query functions for specified tables.
Python
105
4 points
M
MCP Scan
MCP-Scan is a security scanning tool for MCP servers, used to detect common security vulnerabilities such as prompt injection, tool poisoning, and cross-domain escalation.
Python
609
5 points
A
Agentic Radar
Agentic Radar is a security scanning tool for analyzing and assessing agentic systems, helping developers, researchers, and security experts understand the workflows of agentic systems and identify potential vulnerabilities.
Python
548
5 points
C
Cloudflare
Changesets is a build tool for managing versions and releases in multi - package or single - package repositories.
TypeScript
1.5K
5 points
Featured MCP Services
M
Markdownify MCP
Markdownify is a multi-functional file conversion service that supports converting multiple formats such as PDFs, images, audio, and web page content into Markdown format.
TypeScript
1.7K
5 points
D
Duckduckgo MCP Server
Certified
The DuckDuckGo Search MCP Server provides web search and content scraping services for LLMs such as Claude.
Python
823
4.3 points
G
Gitlab MCP Server
Certified
The GitLab MCP server is a project based on the Model Context Protocol that provides a comprehensive toolset for interacting with GitLab accounts, including code review, merge request management, CI/CD configuration, and other functions.
TypeScript
79
4.3 points
N
Notion Api MCP
Certified
A Python-based MCP Server that provides advanced to-do list management and content organization functions through the Notion API, enabling seamless integration between AI models and Notion.
Python
130
4.5 points
U
Unity
Certified
UnityMCP is a Unity editor plugin that implements the Model Context Protocol (MCP), providing seamless integration between Unity and AI assistants, including real - time state monitoring, remote command execution, and log functions.
C#
554
5 points
F
Figma Context MCP
Framelink Figma MCP Server is a server that provides access to Figma design data for AI programming tools (such as Cursor). By simplifying the Figma API response, it helps AI more accurately achieve one - click conversion from design to code.
TypeScript
6.6K
4.5 points
C
Context7
Context7 MCP is a service that provides real-time, version-specific documentation and code examples for AI programming assistants. It is directly integrated into prompts through the Model Context Protocol to solve the problem of LLMs using outdated information.
TypeScript
5.2K
4.7 points
M
Minimax MCP Server
The MiniMax Model Context Protocol (MCP) is an official server that supports interaction with powerful text-to-speech, video/image generation APIs, and is suitable for various client tools such as Claude Desktop and Cursor.
Python
745
4.8 points
AIbase
Zhiqi Future, Your AI Solution Think Tank
© 2025AIbase