🚀 @cloudwerxlab/gpt-image-1-mcp
A Model Context Protocol (MCP) server for generating and editing images using the OpenAI gpt-image-1 model.
🚀 Quick Start
Run this MCP server directly using NPX without installing it. View on npm.
npx -y @cloudwerxlab/gpt-image-1-mcp
The -y flag automatically answers "yes" to any prompts that might appear during the installation process.
📋 Prerequisites
| Property |
Details |
| Node.js |
Node.js (v14 or higher) |
| API Key |
OpenAI API key with access to gpt-image-1 |
🔑 Environment Variables
| Variable |
Required |
Description |
OPENAI_API_KEY |
✅ Yes |
Your OpenAI API key with access to the gpt-image-1 model |
GPT_IMAGE_OUTPUT_DIR |
❌ No |
Custom directory for saving generated images (defaults to user's Pictures folder under gpt-image-1 subfolder) |
💻 Usage Examples
Basic Usage
export OPENAI_API_KEY=sk-your-openai-api-key
export GPT_IMAGE_OUTPUT_DIR=/home/username/Pictures/ai-generated-images
npx -y @cloudwerxlab/gpt-image-1-mcp
Advanced Usage (Windows - PowerShell)
$env:OPENAI_API_KEY = "sk-your-openai-api-key"
$env:GPT_IMAGE_OUTPUT_DIR = "C:\Users\username\Pictures\ai-generated-images"
npx -y @cloudwerxlab/gpt-image-1-mcp
Advanced Usage (Windows - Command Prompt)
:: Set your OpenAI API key
set OPENAI_API_KEY=sk-your-openai-api-key
:: Optional: Set custom output directory
set GPT_IMAGE_OUTPUT_DIR=C:\Users\username\Pictures\ai-generated-images
:: Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
🔌 Integration with MCP Clients
🛠️ Setting Up in an MCP Client
Step 1: Locate Settings File
- For Roo:
c:\Users\<username>\AppData\Roaming\Code\User\globalStorage\rooveterinaryinc.roo-cline\settings\mcp_settings.json
- For VS Code MCP Extension: Check your extension documentation for the settings file location
- For Cursor:
~/.config/cursor/mcp_settings.json (Linux/macOS) or %APPDATA%\Cursor\mcp_settings.json (Windows)
- For Augment:
~/.config/augment/mcp_settings.json (Linux/macOS) or %APPDATA%\Augment\mcp_settings.json (Windows)
- For Windsurf:
~/.config/windsurf/mcp_settings.json (Linux/macOS) or %APPDATA%\Windsurf\mcp_settings.json (Windows)
Step 2: Add Configuration
Add the following configuration to the mcpServers object:
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": [
"-y",
"@cloudwerxlab/gpt-image-1-mcp"
],
"env": {
"OPENAI_API_KEY": "PASTE YOUR OPEN-AI KEY HERE",
"GPT_IMAGE_OUTPUT_DIR": "OPTIONAL: PATH TO SAVE GENERATED IMAGES"
}
}
}
}
Example Configurations for Different Operating Systems
| Operating System |
Example Configuration |
| Windows |
|
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "C:\\Users\\username\\Pictures\\ai-generated-images"
}
}
}
}
| Linux/macOS |
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "/home/username/Pictures/ai-generated-images"
}
}
}
}
⚠️ Important Note
For Windows paths, use double backslashes (\\) to escape the backslash character in JSON. For Linux/macOS, use forward slashes (/).
✨ Features
🎨 Core Tools
create_image: Generate new images from text prompts
create_image_edit: Edit existing images with text prompts and masks
🚀 Key Benefits
- Simple integration with MCP clients
- Full access to OpenAI's gpt-image-1 capabilities
- Streamlined workflow for AI image generation
💡 Enhanced Capabilities
| Category |
Features |
| 📊 Output & Formatting |
|
- ✅ Beautifully Formatted Output: Responses include emojis and detailed information
- ✅ Automatic Image Saving: All generated images saved to disk for easy access
- ✅ Detailed Token Usage: View token consumption for each request
| ⚙️ Configuration & Handling |
- ✅ Configurable Output Directory: Customize where images are saved
- ✅ File Path Support: Edit images using file paths instead of base64 encoding
- ✅ Comprehensive Error Handling: Detailed error reporting with specific error codes, descriptions, and troubleshooting suggestions
🔄 How It Works
| 🖼️ Image Generation |
✏️ Image Editing |
1. Server receives prompt and parameters 2. Calls OpenAI API using gpt-image-1 model 3. API returns base64-encoded images 4. Server saves images to configured directory 5. Returns formatted response with paths and metadata |
1. Server receives image, prompt, and optional mask 2. For file paths, reads and prepares files for API 3. Uses direct curl command for proper MIME handling 4. API returns base64-encoded edited images 5. Server saves images to configured directory 6. Returns formatted response with paths and metadata |
📁 Output Directory Behavior
| Storage Location |
File Management |
- 🔹 Default Location: User's Pictures folder under gpt-image-1 subfolder (e.g., C:\Users\username\Pictures\gpt-image-1 on Windows) - 🔹 Custom Location: Set via GPT_IMAGE_OUTPUT_DIR environment variable - 🔹 Fallback Location: ./generated-images (if Pictures folder can't be determined) |
- 🔹 Directory Creation: Automatically creates output directory if it doesn't exist - 🔹 File Naming: Images saved with timestamped filenames (e.g., image-2023-05-05T12-34-56-789Z.png) - 🔹 Cross-Platform: Works on Windows, macOS, and Linux with appropriate Pictures folder detection |
📦 Installation
This package is available on npm: @cloudwerxlab/gpt-image-1-mcp
You can install it globally:
npm install -g @cloudwerxlab/gpt-image-1-mcp
Or run it directly with npx as shown in the Quick Start section.
Tool: create_image
Generates a new image based on a text prompt.
Parameters
| Parameter |
Type |
Required |
Description |
prompt |
string |
Yes |
The text description of the image to generate (max 32,000 chars) |
size |
string |
No |
Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
quality |
string |
No |
Image quality: "high" (default), "medium", or "low" |
n |
integer |
No |
Number of images to generate (1-10, default: 1) |
background |
string |
No |
Background style: "transparent", "opaque", or "auto" (default) |
output_format |
string |
No |
Output format: "png" (default), "jpeg", or "webp" |
output_compression |
integer |
No |
Compression level (0-100, default: 0) |
user |
string |
No |
User identifier for OpenAI usage tracking |
moderation |
string |
No |
Moderation level: "low" or "auto" (default) |
Example
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image</tool_name>
<arguments>
{
"prompt": "A futuristic city skyline at sunset, digital art",
"size": "1024x1024",
"quality": "high",
"n": 1,
"background": "auto"
}
</arguments>
</use_mcp_tool>
Response
The tool returns:
- A formatted text message with details about the generated image(s)
- The image(s) as base64-encoded data
- Metadata including token usage and file paths
Tool: create_image_edit
Edits an existing image based on a text prompt and optional mask.
Parameters
| Parameter |
Type |
Required |
Description |
image |
string, object, or array |
Yes |
The image(s) to edit (base64 string or file path object) |
prompt |
string |
Yes |
The text description of the desired edit (max 32,000 chars) |
mask |
string or object |
No |
The mask that defines areas to edit (base64 string or file path object) |
size |
string |
No |
Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
quality |
string |
No |
Image quality: "high" (default), "medium", or "low" |
n |
integer |
No |
Number of images to generate (1-10, default: 1) |
background |
string |
No |
Background style: "transparent", "opaque", or "auto" (default) |
user |
string |
No |
User identifier for OpenAI usage tracking |
Example with Base64 Encoded Image
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image_edit</tool_name>
<arguments>
{
"image": "BASE64_ENCODED_IMAGE_STRING",
"prompt": "Add a small robot in the corner",
"mask": "BASE64_ENCODED_MASK_STRING",
"quality": "high"
}
</arguments>
</use_mcp_tool>
Example with File Path
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image_edit</tool_name>
<arguments>
{
"image": {
"filePath": "C:/path/to/your/image.png"
},
"prompt": "Add a small robot in the corner",
"mask": {
"filePath": "C:/path/to/your/mask.png"
},
"quality": "high"
}
</arguments>
</use_mcp_tool>
Response
The tool returns:
- A formatted text message with details about the edited image(s)
- The edited image(s) as base64-encoded data
- Metadata including token usage and file paths
🔧 Troubleshooting
🚨 Common Issues
| Issue |
Solution |
| 🖼️ MIME Type Errors |
Ensure image files have the correct extension (.png, .jpg, etc.) that matches their actual format. The server uses file extensions to determine MIME types. |
| 🔑 API Key Issues |
Verify your OpenAI API key is correct and has access to the gpt-image-1 model. Check for any spaces or special characters that might have been accidentally included. |
| 🛠️ Build Errors |
Ensure you have the correct TypeScript version installed (v5.3.3 or compatible) and that your tsconfig.json is properly configured. Run npm install to ensure all dependencies are installed. |
| 📁 Output Directory Issues |
Check if the process has write permissions to the configured output directory. Try using an absolute path for GPT_IMAGE_OUTPUT_DIR if relative paths aren't working. |
🔍 Error Handling and Reporting
The MCP server includes comprehensive error handling that provides detailed information when something goes wrong. When an error occurs:
- Error Format: All errors are returned with:
- A clear error message describing what went wrong
- The specific error code or type
- Additional context about the error when available
- AI Assistant Behavior: When using this MCP server with AI assistants:
- The AI will always report the full error message to help with troubleshooting
- The AI will explain the likely cause of the error in plain language
- The AI will suggest specific steps to resolve the issue
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
License Summary
The MIT License is a permissive license that is short and to the point. It lets people do anything with your code with proper attribution and without warranty.
You are free to:
- Use the software commercially
- Modify the software
- Distribute the software
- Use and modify the software privately
Under the following terms:
- Include the original copyright notice and the license notice in all copies or substantial uses of the work
Limitations:
- The authors provide no warranty with the software and are not liable for any damages
🙏 Acknowledgments
Report Bug • Request Feature • Visit Our Website
Developed with ❤️ by CLOUDWERX