🚀 MCP Toolz
Save contexts and todos across Claude Code sessions, get feedback from ChatGPT, Claude, Gemini, and DeepSeek.
🚀 Quick Start
📦 Installation
From PyPI (Recommended)
pip install mcp-toolz
From Source (Development)
git clone https://github.com/taylorleese/mcp-toolz.git
cd mcp-toolz
python3 -m venv venv
source venv/bin/activate
pip install -e ".[dev]"
Configuration
export OPENAI_API_KEY=sk-...
export ANTHROPIC_API_KEY=sk-ant-...
export GOOGLE_API_KEY=...
export DEEPSEEK_API_KEY=sk-...
cp .env.example .env
MCP Server Setup (Recommended)
The primary way to use mcp-toolz is via the MCP server in Claude Code:
- Add to Claude Code settings (add this JSON to your Claude Code MCP settings):
If installed via pip:
{
"mcpServers": {
"mcp-toolz": {
"command": "python",
"args": ["-m", "mcp_server"],
"env": {
"OPENAI_API_KEY": "sk-...",
"ANTHROPIC_API_KEY": "sk-ant-...",
"GOOGLE_API_KEY": "...",
"DEEPSEEK_API_KEY": "sk-..."
}
}
}
}
If installed from source:
{
"mcpServers": {
"mcp-toolz": {
"command": "python",
"args": ["-m", "mcp_server"],
"cwd": "/absolute/path/to/mcp-toolz",
"env": {
"PYTHONPATH": "/absolute/path/to/mcp-toolz/src"
}
}
}
}
- Configure API keys - Add your API keys to the
env section (pip) or .env file (source)
- Restart Claude Code to load the MCP server
- Use MCP tools in Claude Code:
- "Save this context about authentication"
- "Ask ChatGPT about the last context I saved"
- "Show my active todos"
- "Search contexts tagged with 'bug'"
All MCP tools are automatically available - see MCP Server Tools below.
✨ Features
- 🔌 MCP Server: Works NOW with Claude Code - full tool integration ready
- Session Continuity: Never lose context when restarting Claude Code - restore "what was I working on last session"
- Project Organization: Contexts and todos automatically organized by project directory
- Session Tracking: Every Claude Code session gets a unique ID - track your work over time
- AI Feedback: Get feedback from ChatGPT (OpenAI), Claude (Anthropic), Gemini (Google), and DeepSeek on your code and decisions
- Context Types: Save conversations, code snippets, architectural suggestions, or error traces
- Persistent Todos: Save and restore your todo list across sessions - never forget where you left off
- Full-Text Search: Find anything by content, tags, project, or session
- CLI + MCP: Use via Claude Code MCP tools or standalone CLI commands
💻 Usage Examples
📚 Basic Usage
Here are practical examples of how to use mcp-toolz in Claude Code:
Example 1: Get Multiple AI Perspectives on Architecture Decisions
Prompt:
I'm deciding between using Redis or Memcached for caching user sessions.
Save this as a context and ask ChatGPT for their analysis.
Use tags: caching, redis, memcached, architecture
What happens:
- Claude Code uses
context_save to save your architectural decision
- Then uses
ask_chatgpt to get ChatGPT's perspective
- You can compare multiple AI perspectives to inform your decision
Follow-up prompts:
- "Ask Claude the same question for comparison"
- "Ask Gemini for another perspective"
- "What does DeepSeek think about this?"
- "Search my contexts tagged with 'architecture'"
Example 2: Session Continuity - Never Lose Your Place
Prompt (end of work session):
Save my current todo list so I can restore it tomorrow
What happens:
- Claude Code uses
todo_save to snapshot your current work state
- Todos are saved with project path and timestamp
Next day prompt:
What was I working on yesterday? Restore my todos.
What happens:
- Claude Code uses
todo_restore to get your last snapshot
- Shows you exactly where you left off
- You can jump right back into work
Example 3: Debug with Multiple AI Perspectives
Prompt:
I'm getting "TypeError: Cannot read property 'map' of undefined" in my React component.
The error occurs in UserList.jsx when rendering the users array.
Save this as an error context and ask ChatGPT, Claude, and Gemini for debugging suggestions.
Tags: react, debugging, javascript
What happens:
- Claude Code uses
context_save to record the error
- Uses
ask_chatgpt to get OpenAI's debugging approach
- Uses
ask_claude to get Anthropic's perspective
- Uses
ask_gemini for Google's analysis
- You can compare different debugging strategies from multiple AI models
Follow-up prompts:
- "Search for other contexts tagged with 'react' bugs"
- "Show me contexts from my last session"
Example 4: Track Performance Optimization Ideas
Prompt:
Save this performance optimization idea: "Lazy load images below the fold using
Intersection Observer API. Estimated 40% reduction in initial page load."
Type: suggestion, Tags: performance, optimization, images
What happens:
- Claude Code uses
context_save with type "suggestion"
- Context is searchable and tied to current project
- Available across all future sessions
Later prompt:
Search my contexts for performance optimization ideas
What happens:
- Claude Code uses
context_search with your query
- Returns all matching contexts across sessions
- You can review past optimization ideas
Example 5: Cross-Session Knowledge Sharing
Prompt (in Project A):
I figured out how to handle OAuth refresh tokens properly.
Save this so I can reference it in other projects:
"Store refresh tokens in httpOnly cookies, access tokens in memory only.
Rotate refresh tokens on each use. Set 7-day expiry on refresh, 15min on access."
Type: code, Tags: oauth, security, authentication
Prompt (later in Project B):
How did I implement OAuth refresh tokens in my last project?
Search for contexts about oauth and show me what I saved.
What happens:
- Claude Code uses
context_search to find your OAuth implementation
- Retrieves the context across projects
- You reuse your own knowledge without starting from scratch
🚀 Advanced Usage
Sharing Contexts Between Agents
mcp-toolz makes it easy to share contexts and todos across multiple Claude Code sessions or agents.
MCP Resources (Passive Discovery)
Claude Code can automatically discover and read contexts/todos via MCP resources:
Context Resources:
mcp-toolz://contexts/project/recent - Recent contexts for current project
mcp-toolz://contexts/project/sessions - List of recent Claude Code sessions for current project
mcp-toolz://contexts/session/{session_id} - All contexts from a specific session
Todo Resources:
mcp-toolz://todos/recent - Last 20 todo snapshots (all projects)
mcp-toolz://todos/active - Active todos for current working directory
Session Tracking:
Each Claude Code session automatically gets a unique session ID. All contexts saved during that session are tagged with:
session_id - UUID of the Claude Code session
session_timestamp - When the session started
project_path - Directory where the context was created
This makes it easy to restore context from previous sessions: "Show me what I was working on in my last session"
Resources are read-only views into the shared database. Claude Code can discover them automatically without explicit tool calls.
Shared Database Setup
By default, mcp-toolz stores all data in ~/.mcp-toolz/contexts.db, which is automatically shared across all projects on the same machine. No additional configuration needed!
For advanced use cases (syncing across multiple machines via Dropbox, iCloud, etc.):
- Choose a synced location for the database:
mkdir -p ~/Dropbox/mcp-toolz-shared
- Update
.env file or MCP config to point to the synced database:
MCP_TOOLZ_DB_PATH=~/Dropbox/mcp-toolz-shared/contexts.db
Or in your MCP config:
{
"mcpServers": {
"mcp-toolz": {
"command": "python",
"args": ["-m", "mcp_server"],
"cwd": "/absolute/path/to/mcp-toolz",
"env": {
"PYTHONPATH": "/absolute/path/to/mcp-toolz/src",
"MCP_TOOLZ_DB_PATH": "/Users/you/Dropbox/mcp-toolz-shared/contexts.db"
}
}
}
}
- Restart Claude Code - it now uses the synced database location
How It Works
- Contexts: Organized by
project_path (each directory gets its own contexts)
- Session Tracking: Contexts tagged with session ID and timestamp for easy restoration
- Todos: Organized by
project_path (each directory gets its own snapshots)
- Single SQLite DB: All data stored in one database, filtered by project and session
- Automatic Updates: Changes made in one session are immediately visible to others
Use Cases
- Multiple machines: Keep contexts in sync across laptop and desktop
- Session continuity: Pick up where you left off after restarting Claude Code
CLI Usage (Alternative)
./mcp-toolz context save-and-query \
--type suggestion \
--title "Redis caching strategy" \
--content "Use Redis for session storage with 1-hour TTL" \
--tags "caching,redis"
./mcp-toolz todo save \
--todos '[
{"content":"Fix auth bug","status":"in_progress","activeForm":"Fixing auth bug"},
{"content":"Write tests","status":"pending","activeForm":"Writing tests"}
]' \
--context "Working on authentication"
./mcp-toolz context list
./mcp-toolz todo list
./mcp-toolz todo restore
📚 Documentation
MCP Server Tools
The MCP server works NOW with Claude Code and provides these tools:
Context Tools:
context_save - Save a new context (automatically includes session info)
context_search - Search by query or tags
context_get - Get by ID
context_list - List recent
context_delete - Delete by ID
AI Feedback Tools:
ask_chatgpt - Get ChatGPT's analysis of a context (supports custom questions)
ask_claude - Get Claude's analysis of a context (supports custom questions)
ask_gemini - Get Gemini's analysis of a context (supports custom questions)
ask_deepseek - Get DeepSeek's analysis of a context (supports custom questions)
Todo Tools:
todo_search - Search snapshots
todo_get - Get by ID
todo_list - List recent
todo_save - Save snapshot
todo_restore - Get active/specific snapshot
todo_delete - Delete by ID
Session Tracking:
When saving contexts through MCP tools, they are automatically tagged with:
- Current project directory (
project_path)
- Session ID (unique per Claude Code session)
- Session timestamp (when the session started)
Future: Once ChatGPT Desktop adds MCP support, you'll be able to use these same tools there too.
Command Reference
Context Commands
./mcp-toolz context save-and-query \
--type <type> \
--title "Title" \
--content "..." \
--tags "tag1,tag2"
./mcp-toolz context save --type code --file path/to/file.py
./mcp-toolz context ask-chatgpt <context-id> [--question "Your question"]
./mcp-toolz context ask-claude <context-id> [--question "Your question"]
./mcp-toolz context list [--limit N] [--type TYPE]
./mcp-toolz context search "query"
./mcp-toolz context show <context-id>
./mcp-toolz context delete <context-id>
Context Types:
suggestion - Architecture decisions, implementation plans
code - Code snippets, implementations
conversation - Discussions, Q&A sessions
error - Error messages, stack traces, debugging
Todo Commands
./mcp-toolz todo save \
--todos '[{"content":"...","status":"pending","activeForm":"..."}]' \
--context "What you're working on"
./mcp-toolz todo restore [<snapshot-id>]
./mcp-toolz todo list [--project-path PATH]
./mcp-toolz todo search "query"
./mcp-toolz todo show <snapshot-id>
./mcp-toolz todo delete <snapshot-id>
Todo Status: pending, in_progress, completed
Get Help
./mcp-toolz --help
./mcp-toolz context --help
./mcp-toolz todo --help
Common Workflows
Get Multiple AI Perspectives
When evaluating an implementation, compare insights from different AI models:
./mcp-toolz context save-and-query \
--type suggestion \
--title "Microservices vs Monolith for e-commerce" \
--content "Building platform with 5 services. Start microservices or monolith first?" \
--tags "architecture,scalability"
The AI's response appears immediately in your console. You can also ask specific questions or get Claude's perspective:
./mcp-toolz context ask-chatgpt <context-id> --question "What are the scalability concerns?"
./mcp-toolz context ask-claude <context-id>
./mcp-toolz context ask-claude <context-id> --question "How would you handle database migrations?"
Debug with Two Perspectives
./mcp-toolz context save-and-query \
--type error \
--title "CORS issue in production" \
--content "Error: blocked by CORS policy. Headers: ..." \
--tags "debugging,cors,production"
Session Continuity
./mcp-toolz todo save \
--todos '[
{"content":"Implement login","status":"completed","activeForm":"Implementing login"},
{"content":"Add OAuth","status":"in_progress","activeForm":"Adding OAuth"},
{"content":"Write tests","status":"pending","activeForm":"Writing tests"}
]' \
--context "Day 2 of auth feature"
./mcp-toolz todo restore
Share Across Claude Code Sessions
./mcp-toolz context save \
--type conversation \
--title "Performance optimization ideas" \
--content "..." \
--tags "performance"
./mcp-toolz context search "performance"
./mcp-toolz context show <context-id>
./mcp-toolz context ask-chatgpt <context-id> --question "What's the performance impact?"
./mcp-toolz context ask-claude <context-id> --question "Are there any security concerns?"
Environment Variables
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
GOOGLE_API_KEY=...
DEEPSEEK_API_KEY=sk-...
MCP_TOOLZ_DB_PATH=~/.mcp-toolz/contexts.db
MCP_TOOLZ_MODEL=gpt-5
MCP_TOOLZ_CLAUDE_MODEL=claude-sonnet-4-5-20250929
MCP_TOOLZ_GEMINI_MODEL=gemini-2.0-flash-thinking-exp-01-21
MCP_TOOLZ_DEEPSEEK_MODEL=deepseek-chat
Troubleshooting
"Error 401: Invalid API key"
- Verify API keys are set in
.env (OPENAI_API_KEY and/or ANTHROPIC_API_KEY)
- Check billing is enabled on your OpenAI/Anthropic account
- The
./mcp-toolz wrapper automatically unsets shell environment variables to use .env
"No module named context_manager"
- Use
./mcp-toolz helper script (recommended)
- Or set
PYTHONPATH=src before running Python directly
Commands not found
- Activate venv:
source venv/bin/activate
- Make script executable:
chmod +x mcp-toolz
Todos not restoring
- Check you're in the same project directory
- Use
./mcp-toolz todo list to see all snapshots
- Restore specific snapshot:
./mcp-toolz todo restore <snapshot-id>
🔧 Technical Details
Project Structure
mcp-toolz/
├── src/
│ ├── mcp_server/ # MCP server for Claude Code
│ │ └── server.py # MCP tools and resources
│ ├── context_manager/ # CLI and storage
│ │ ├── cli.py # Click-based CLI
│ │ ├── storage.py # SQLite operations
│ │ ├── openai_client.py # ChatGPT API client
│ │ └── anthropic_client.py # Claude API client
│ └── models.py # Pydantic data models
├── data/
│ └── contexts.db # SQLite database
├── requirements.txt
├── requirements-dev.txt
└── mcp-toolz # Helper script
Development
Setup for Contributors
git clone https://github.com/taylorleese/mcp-toolz.git
cd mcp-toolz
python3 -m venv venv
source venv/bin/activate
pip install -r requirements-dev.txt
pre-commit install
cp .env.example .env
Running Tests
source venv/bin/activate
pytest
Code Quality

pre-commit run --all-files
black .
ruff check .
mypy src/
💡 Tips
- Use descriptive titles - Makes searching easier later
- Add relevant tags - Helps organize and find contexts
- Be specific in content - More detail = better AI responses
- Compare AI opinions - Get both ChatGPT and Claude perspectives on important decisions
- Review AI suggestions - They're helpful opinions, not rules
- Save todos regularly - Build habit of saving at end of sessions
📄 License
MIT