Readme
The Conversive AI project is a framework that provides core Gen AI services, aiming to support the Conversive platform. The project includes environment setup, dependency installation, configuration modification, and operation guides, as well as contribution specifications and contact information.
2 points
7.2K

What is Conversive AI?

Conversive AI is a service framework based on generative AI technology, specifically designed to enhance the intelligent interaction capabilities of conversation systems. It provides a series of core AI services that can be integrated into various conversation platforms.

How to use Conversive AI?

Through simple installation steps and configuration, developers can quickly integrate Conversive AI into existing systems. The system provides clear API interfaces and documentation support.

Applicable scenarios

Suitable for conversation scenarios that require natural language processing capabilities, such as intelligent customer service, virtual assistants, and automatic question - answering systems.

Main features

Core AI services
Provide basic generative AI capabilities, supporting natural language understanding and generation
Easy to integrate
Simple installation and configuration process, facilitating rapid deployment
Environment isolation
Support virtual environment deployment to ensure system stability
Advantages
Rapid deployment and integration
Based on a mature Python technology stack
Support environment isolation
Limitations
Requires a Python 3.9 environment
Depends on many third - party libraries
Currently only supports running in a local development environment

How to use

Clone the repository
Get the latest code from the Git repository
Create a virtual environment
Create an independent Python runtime environment for the project
Install dependencies
Install all necessary Python packages
Configure environment variables
Modify the environment variable configuration in the.env file
Run the application
Start the Flask development server

Usage examples

Development environment setup
How to set up a local development environment and run the service
API integration
How to integrate the service into an existing system

Frequently asked questions

Why is Python 3.9 required?
How to modify the service port?
Which operating systems are supported?

Related resources

Markdown tutorial
Learn Markdown syntax
Python virtual environment documentation
Official documentation for Python virtual environments

Installation

Copy the following command to your Client for configuration
Note: Your key is sensitive information, do not share it with anyone.

Alternatives

R
Runno
Runno is a collection of JavaScript toolkits for securely running code in multiple programming languages in environments such as browsers and Node.js. It achieves sandboxed execution through WebAssembly and WASI, supports languages such as Python, Ruby, JavaScript, SQLite, C/C++, and provides integration methods such as web components and MCP servers.
TypeScript
4.6K
5 points
P
Praisonai
PraisonAI is a production-ready multi-AI agent framework with self-reflection capabilities, designed to create AI agents to automate the solution of various problems from simple tasks to complex challenges. It simplifies the construction and management of multi-agent LLM systems by integrating PraisonAI agents, AG2, and CrewAI into a low-code solution, emphasizing simplicity, customization, and effective human-machine collaboration.
Python
4.2K
5 points
N
Netdata
Netdata is an open-source real-time infrastructure monitoring platform that provides second-level metric collection, visualization, machine learning-driven anomaly detection, and automated alerts. It can achieve full-stack monitoring without complex configuration.
Go
5.2K
5 points
M
MCP Server
The Mapbox MCP Server is a model context protocol server implemented in Node.js, providing AI applications with access to Mapbox geospatial APIs, including functions such as geocoding, point - of - interest search, route planning, isochrone analysis, and static map generation.
TypeScript
5.3K
4 points
U
Uniprof
Uniprof is a tool that simplifies CPU performance analysis. It supports multiple programming languages and runtimes, does not require code modification or additional dependencies, and can perform one-click performance profiling and hotspot analysis through Docker containers or the host mode.
TypeScript
7.7K
4.5 points
G
Gk Cli
GitKraken CLI is a command - line tool that provides multi - repository workflow management, AI - generated commit messages and pull requests, and includes a local MCP server for integrating tools such as Git, GitHub, and Jira.
4.6K
4.5 points
M
MCP
A collection of official Microsoft MCP servers, providing AI assistant integration tools for various services such as Azure, GitHub, Microsoft 365, and Fabric. It supports local and remote deployment, helping developers connect AI models with various data sources and tools through a standardized protocol.
C#
7.4K
5 points
C
Claude Context
Claude Context is an MCP plugin that provides in - depth context of the entire codebase for AI programming assistants through semantic code search. It supports multiple embedding models and vector databases to achieve efficient code retrieval.
TypeScript
11.5K
5 points
M
Markdownify MCP
Markdownify is a multi-functional file conversion service that supports converting multiple formats such as PDFs, images, audio, and web page content into Markdown format.
TypeScript
28.2K
5 points
G
Gitlab MCP Server
Certified
The GitLab MCP server is a project based on the Model Context Protocol that provides a comprehensive toolset for interacting with GitLab accounts, including code review, merge request management, CI/CD configuration, and other functions.
TypeScript
18.9K
4.3 points
N
Notion Api MCP
Certified
A Python-based MCP Server that provides advanced to-do list management and content organization functions through the Notion API, enabling seamless integration between AI models and Notion.
Python
17.4K
4.5 points
D
Duckduckgo MCP Server
Certified
The DuckDuckGo Search MCP Server provides web search and content scraping services for LLMs such as Claude.
Python
58.3K
4.3 points
U
Unity
Certified
UnityMCP is a Unity editor plugin that implements the Model Context Protocol (MCP), providing seamless integration between Unity and AI assistants, including real - time state monitoring, remote command execution, and log functions.
C#
25.7K
5 points
F
Figma Context MCP
Framelink Figma MCP Server is a server that provides access to Figma design data for AI programming tools (such as Cursor). By simplifying the Figma API response, it helps AI more accurately achieve one - click conversion from design to code.
TypeScript
53.4K
4.5 points
M
Minimax MCP Server
The MiniMax Model Context Protocol (MCP) is an official server that supports interaction with powerful text-to-speech, video/image generation APIs, and is suitable for various client tools such as Claude Desktop and Cursor.
Python
39.2K
4.8 points
G
Gmail MCP Server
A Gmail automatic authentication MCP server designed for Claude Desktop, supporting Gmail management through natural language interaction, including complete functions such as sending emails, label management, and batch operations.
TypeScript
19.4K
4.5 points
AIBase
Zhiqi Future, Your AI Solution Think Tank
© 2025AIBase