🧠 Behavioural Prediction MCP Server
The Behavioural Prediction MCP Server offers AI - powered tools for wallet behavior prediction, fraud detection, and rug pull prediction, safeguarding DeFi users and providing trustworthiness scores.
🚀 Quick Start
The Behavioural Prediction MCP Server is a public - facing tool with a private backend. It can be accessed by request with an API key. Here are the basic details:
- MCP Server Name: Behavioural Prediction MCP
- Category: Web3 / Security / DeFi Analytics
- Status: Public tools – Private backend
- Access: By request (API key)
- Server URL: [https://prediction.mcp.chainaware.ai/]
- Repository: [https://github.com/ChainAware/behavioral - prediction - mcp]
✨ Features
The server provides the following AI - powered tools:
- Analyze wallet behavior prediction.
- Conduct fraud detection.
- Perform rug pull prediction.
- Developers and platforms can integrate these tools via the MCP protocol to protect DeFi users, monitor liquidity risks, and score wallet or contract trustworthiness.
📦 Installation
There is no specific installation guide provided in the original README.
💻 Usage Examples
Node.js Example
import { MCPClient } from "mcp - client";
const client = new MCPClient("https://prediction.mcp.chainaware.ai/");
const result = await client.call("predictive_rug_pull", {
apiKey: "your_api_key",
network: "BNB",
walletAddress: "0x1234..."
});
console.log(result);
Python Example
from mcp_client import MCPClient
client = MCPClient("https://prediction.mcp.chainaware.ai/")
res = client.call("chat", {"query": "What is the rug pull risk of 0x1234?"})
print(res)
📚 Documentation
Available Tools
1. Predictive Fraud Detection Tool
- ID:
predictive_fraud - Description: This AI - powered algorithm forecasts the likelihood of fraudulent activity on a given wallet address before it happens (≈98% accuracy) and performs AML/Anti - Money - Laundering checks. Use it when your user wants a risk assessment or early - warning on a blockchain address.
- Example Use Cases:
- Is it safe to interact with vitalik.eth?
- What is the fraudulent status of this address?
- Is my new wallet at risk of being used for fraud?
- Inputs:
| Property | Details |
|----------|---------|
|
apiKey| string, required for authentication | |network| string, required, Blockchain network (ETH,BNB,POLYGON,TON,BASE,TRON,HAQQ) | |walletAddress| string, required, The wallet address to evaluate | - Outputs (JSON):
{
"message": "string", // Human - readable status message
"walletAddress": "string", // hex address
"status": "Fraud", // Fraudelent status (Fraud,Not Fraud,New Address)
"probabilityFraud": "0.00–1.00", // Decimal probability
"token": "string", //
"lastChecked": "ISO - 8601 timestamp",
"forensic_details": { // Deep forensic breakdown
/* ...other metrics... */
},
"createdAt": "ISO - 8601 timestamp",
"updatedAt": "ISO - 8601 timestamp"
}
- Error cases:
403 Unauthorized→ invalidapiKey400 Bad Request→ malformednetworkorwalletAddress500 Internal Server Error→ temporary downstream failure
2. Predictive Behaviour Analysis Tool
- ID:
predictive_behaviour - Description: This AI - driven engine projects what a wallet address intentions or what address is likely to do next, profiles its past on - chain history, and recommends personalized actions.
- Example Use Cases:
- “What will this address do next?”
- “Is the user high - risk or experienced?”
- “Recommend the best DeFi strategies for 0x1234... on ETH network.”
- Inputs:
| Property | Details |
|----------|---------|
|
apiKey| string, required for authentication | |network| string, required, Blockchain network (ETH,BNB,BASE,HAQQ) | |walletAddress| string, required, The wallet address to evaluate | - Outputs (JSON):
{
"message": "string", // e.g. “Success” or error text
"walletAddress": "string", // echoed input
"status": "string", // Fraudelent status (Fraud,Not Fraud,New Address)
"probabilityFraud": "0.00–1.00", // decimal fraud score
"lastChecked": "ISO - 8601 timestamp", // e.g. “2025 - 01 - 03T16:19:13.000Z”
"forensic_details": { /* dict of forensic metrics */ },
"categories": [ { "Category":"string", "Count":int }, … ],
"riskProfile": [ { "Category":"string", "Balance_age":float }, … ],
"segmentInfo": "JSON - string of segment counts",
"experience": { "Type":"Experience", "Value":int },
"intention": {
"Type":"Intentions",
"Value": { "Prob_Trade":"High", "Prob_Stake":"Medium", … }
},
"protocols": [ { "Protocol":"string","Count":int }, … ],
"recommendation": { "Type":"Recommendation", "Value":[ "string", … ] },
"createdAt": "ISO - 8601 timestamp",
"updatedAt": "ISO - 8601 timestamp"
}
- Error cases:
403 Unauthorized→ invalidapiKey400 Bad Request→ malformednetworkorwalletAddress500 Internal Server Error→ temporary downstream failure
3. Predictive Rug - Pull Detection Tool
- ID:
predictive_rug_pull - Description: This AI - powered engine forecasts which liquidity pools or contracts are likely to perform a “rug pull” in the future. Use it when you need to warn users before they deposit into risky pools or to monitor smart - contract security on - chain.
- Example Use Cases:
- “Will this new DeFi pool rug - pull if I stake my assets?”
- “Monitor my LP position for potential future exploits.”
- Inputs:
| Property | Details |
|----------|---------|
|
apiKey| string, required for authentication | |network| string, required, Blockchain network (ETH,BNB,BASE,HAQQ) | |walletAddress| string, required, Smart contract or liquidity pool address | - Outputs (JSON):
{
"message": "Success",
"contractAddress": "0x1234...",
"status": "Fraud",
"probabilityFraud": 0.87,
"lastChecked": "2025-10-25T12:45:00Z",
"forensic_details": { /* dict of on - chain metrics */ },
"createdAt": "2025-10-25T12:45:00Z",
"updatedAt": "2025-10-25T12:45:00Z"
}
- Error cases:
403 Unauthorized→ invalidapiKey400 Bad Request→ malformednetworkorwalletAddress500 Internal Server Error→ temporary downstream failure
Service Configuration
{
"type": "http",
"config": {
"mcpServers": {
"behavioural_prediction_mcp": {
"type": "http",
"url": "https://prediction.mcp.chainaware.ai/sse",
"description": "The Behavioural Prediction MCP Server provides AI - powered tools to analyze wallet behaviour prediction,fraud detection and rug pull prediction.",
"headers":{
"x - api - key":""
},
"params":{
"walletAddress":"",
"network":""
},
"auth": {
"type": "api_key",
"header": "X - API - Key"
}
}
}
}
}
Integration Notes
- Compatible with all MCP clients (Node, Python, Browser).
- Uses Server - Sent Events (SSE) for real - time responses.
- JSON schemas match MCP spec.
- Rate limits may apply.
- API key required for production endpoints.
Access Policy
The MCP server requires an API key for production usage. To request access, you can subscribe to listed available plans via: https://chainaware.ai/pricing
📄 License
The client examples are under the MIT license. The server implementation and backend logic are proprietary and remain private.














