M

MCP Run Python

PydanticAI是由Pydantic團隊開發的Python代理框架,旨在簡化基於生成式AI的生產級應用開發。它支持多種AI模型,集成Pydantic驗證和結構化輸出,提供依賴注入系統、流式響應和圖形支持,並與Pydantic Logfire無縫集成,適用於類型安全、高效的AI應用構建。
0分
9.0K

What is PydanticAI?

PydanticAI is a Python agent framework designed to simplify building production-grade applications with Generative AI. It provides a structured way to interact with LLMs while leveraging Pydantic's powerful data validation capabilities.

How to use PydanticAI?

You can create agents that interact with various LLM providers, define structured outputs, add tools for the LLM to call, and use dependency injection to customize behavior. The framework handles validation, retries, and conversation management.

Use Cases

Ideal for building AI assistants, support chatbots, content generation tools, and any application requiring structured interactions with LLMs. Particularly useful when you need type safety and production reliability.

Key Features

Model AgnosticSupports OpenAI, Anthropic, Gemini, Deepseek, Ollama, Groq, Cohere, and Mistral with simple interfaces for adding others
Structured ResponsesUses Pydantic models to validate and structure LLM outputs, ensuring consistent responses
Dependency InjectionOptional DI system to provide data/services to system prompts, tools and validators
Streamed ResponsesSupports streaming LLM outputs with immediate validation
Graph SupportPydantic Graph helps manage complex workflows with typing hints

Pros and Cons

Advantages
Built by Pydantic team with strong type safety
Seamless integration with Pydantic Logfire for monitoring
Clean Python-centric design using standard control flow
Excellent for production applications requiring reliability
Limitations
Newer framework with smaller community than some alternatives
Primarily designed for Python ecosystem
Learning curve if unfamiliar with Pydantic

Getting Started

Install PydanticAI
Install the package using pip
Create an Agent
Define an agent with your chosen LLM provider
Add Tools
Register functions the LLM can call during conversations
Run Queries
Interact with your agent synchronously or asynchronously

Example Use Cases

Bank Support AgentCustomer service chatbot that checks account details
Content GeneratorGenerate marketing copy with consistent formatting

Frequently Asked Questions

How does this compare to LangChain?
Can I use my existing Pydantic models?
Is async supported?

Additional Resources

Official Documentation
Complete API reference and usage guides
GitHub Repository
Source code and issue tracker
Pydantic Website
Learn more about the Pydantic validation library
安裝
複製以下命令到你的Client進行配置
注意:您的密鑰屬於敏感信息,請勿與任何人分享。
精選MCP服務推薦
B
Baidu Map
已認證
百度地圖MCP Server是國內首個兼容MCP協議的地圖服務,提供地理編碼、路線規劃等10個標準化API接口,支持Python和Typescript快速接入,賦能智能體實現地圖相關功能。
Python
695
4.5分
M
Markdownify MCP
Markdownify是一個多功能文件轉換服務,支持將PDF、圖片、音頻等多種格式及網頁內容轉換為Markdown格式。
TypeScript
1.7K
5分
F
Firecrawl MCP Server
Firecrawl MCP Server是一個集成Firecrawl網頁抓取能力的模型上下文協議服務器,提供豐富的網頁抓取、搜索和內容提取功能。
TypeScript
3.8K
5分
S
Sequential Thinking MCP Server
一個基於MCP協議的結構化思維服務器,通過定義思考階段幫助分解複雜問題並生成總結
Python
245
4.5分
N
Notion Api MCP
已認證
一個基於Python的MCP服務器,通過Notion API提供高級待辦事項管理和內容組織功能,實現AI模型與Notion的無縫集成。
Python
111
4.5分
E
Edgeone Pages MCP Server
EdgeOne Pages MCP是一個通過MCP協議快速部署HTML內容到EdgeOne Pages並獲取公開URL的服務
TypeScript
243
4.8分
C
Context7
Context7 MCP是一個為AI編程助手提供即時、版本特定文檔和代碼示例的服務,通過Model Context Protocol直接集成到提示中,解決LLM使用過時信息的問題。
TypeScript
5.2K
4.7分
M
Magic MCP
Magic Component Platform (MCP) 是一個AI驅動的UI組件生成工具,通過自然語言描述幫助開發者快速創建現代化UI組件,支持多種IDE集成。
JavaScript
1.7K
5分
AIbase
智啟未來,您的人工智慧解決方案智庫
© 2025AIbase