Openalex MCP Server
What is OpenAlex MCP Server?
The OpenAlex MCP Server acts as a bridge between AI systems and the comprehensive OpenAlex academic database. It enables intelligent agents to search and analyze scholarly publications, researcher profiles, institutional data, and citation networks through a standardized protocol.How does it work?
The server implements the Model Configuration Protocol (MCP) to process queries from AI agents, fetches structured data from OpenAlex, and returns easily digestible results. No complex API knowledge required - just connect and query.Ideal Use Cases
Perfect for AI-powered research assistants, academic literature review tools, citation analysis systems, and any application requiring programmatic access to scholarly metadata.Key Features
Comprehensive Academic SearchSearch across millions of papers, authors, and institutions with advanced filtering options
Structured Metadata AccessRetrieve complete publication details including abstracts, citations, funding sources and more
Citation Network AnalysisAccess forward and backward citation graphs to understand research impact
AI-Optimized OutputData formatted specifically for machine processing and natural language generation
Strengths and Limitations
Advantages
Single point of access to OpenAlex's vast academic database
Standardized protocol simplifies integration with AI systems
Open-source nature allows customization and extension
Lightweight and easy to deploy
Limitations
Requires Python 3.10+ environment
Limited to OpenAlex's coverage (does not include all publishers)
No built-in user interface - designed for programmatic access
Getting Started
Install the server
Clone the repository and install dependencies using Python's package manager
Launch the service
Start the MCP server with a simple Python command
Connect your AI agent
Configure your AI system to communicate with the running MCP server endpoint
Practical Examples
Literature Review AssistantAn AI that helps researchers find relevant papers for their literature review
Researcher Profile AnalyzerSystem that generates researcher impact reports
Frequently Asked Questions
Do I need an API key to use OpenAlex through MCP?
What's the difference between using MCP and querying OpenAlex directly?
Can I run this on a cloud server?
Additional Resources
OpenAlex Official Documentation
Complete documentation of the OpenAlex database schema and capabilities
MCP Protocol Specification
Technical details about the Model Configuration Protocol standard
GitHub Repository
Source code and issue tracker for the MCP server implementation
精選MCP服務推薦

Markdownify MCP
Markdownify是一個多功能文件轉換服務,支持將PDF、圖片、音頻等多種格式及網頁內容轉換為Markdown格式。
TypeScript
1.7K
5分

Baidu Map
已認證
百度地圖MCP Server是國內首個兼容MCP協議的地圖服務,提供地理編碼、路線規劃等10個標準化API接口,支持Python和Typescript快速接入,賦能智能體實現地圖相關功能。
Python
695
4.5分

Firecrawl MCP Server
Firecrawl MCP Server是一個集成Firecrawl網頁抓取能力的模型上下文協議服務器,提供豐富的網頁抓取、搜索和內容提取功能。
TypeScript
3.8K
5分

Sequential Thinking MCP Server
一個基於MCP協議的結構化思維服務器,通過定義思考階段幫助分解複雜問題並生成總結
Python
245
4.5分

Notion Api MCP
已認證
一個基於Python的MCP服務器,通過Notion API提供高級待辦事項管理和內容組織功能,實現AI模型與Notion的無縫集成。
Python
111
4.5分

Edgeone Pages MCP Server
EdgeOne Pages MCP是一個通過MCP協議快速部署HTML內容到EdgeOne Pages並獲取公開URL的服務
TypeScript
243
4.8分

Context7
Context7 MCP是一個為AI編程助手提供即時、版本特定文檔和代碼示例的服務,通過Model Context Protocol直接集成到提示中,解決LLM使用過時信息的問題。
TypeScript
5.2K
4.7分

Magic MCP
Magic Component Platform (MCP) 是一個AI驅動的UI組件生成工具,通過自然語言描述幫助開發者快速創建現代化UI組件,支持多種IDE集成。
JavaScript
1.7K
5分