Simple MCP Build
What is MCP Framework?
The Model Context Protocol (MCP) Framework is a specialized tool designed for climate data analysis. It helps researchers and analysts process climate-related datasets through a structured pipeline, while maintaining context memory across executions.How to use MCP Framework?
The framework is executed through a simple command line interface after setting up the Python environment. Configuration is managed through YAML files, making it accessible even for non-programmers.Use Cases
Ideal for climate research teams needing to analyze temperature trends, run scenario projections, or process multiple climate datasets with consistent context tracking.Key Features
Dynamic Query RoutingAutomatically directs queries to appropriate processing modules based on content and context
Execution Context MemoryMaintains memory of previous executions for consistent analysis context
Modular ArchitectureEasy to extend with new analysis modules without modifying core framework
Configuration-DrivenPipeline behavior controlled through simple YAML configuration files
Pros and Cons
Advantages
Simplifies complex climate data analysis workflows
Maintains consistent context across multiple executions
Easy to configure without programming knowledge
Modular design allows for custom extensions
Limitations
Currently focused on climate data analysis (limited to specific use cases)
Requires Python environment setup
Limited documentation for advanced customization
Getting Started
Set up environment
Create and activate a Python virtual environment
Install dependencies
Install required Python packages
Configure pipeline
Edit the config.yaml file to specify datasets and processing steps
Run analysis
Execute the main pipeline
Example Use Cases
Temperature Trend AnalysisAnalyze historical temperature data to identify trends
Climate Scenario ProjectionRun future climate scenarios based on different models
Frequently Asked Questions
Do I need programming skills to use MCP?
Where can I find example configurations?
How do I add my own analysis models?
Additional Resources
GitHub Repository
Source code and issue tracking
Python Virtual Environments Guide
Official Python documentation on virtual environments
YAML Configuration Tutorial
Official YAML specification and examples
精选MCP服务推荐

Firecrawl MCP Server
Firecrawl MCP Server是一个集成Firecrawl网页抓取能力的模型上下文协议服务器,提供丰富的网页抓取、搜索和内容提取功能。
TypeScript
4.3K
5分

Duckduckgo MCP Server
已认证
DuckDuckGo搜索MCP服务器,为Claude等LLM提供网页搜索和内容抓取服务
Python
1.2K
4.3分

Figma Context MCP
Framelink Figma MCP Server是一个为AI编程工具(如Cursor)提供Figma设计数据访问的服务器,通过简化Figma API响应,帮助AI更准确地实现设计到代码的一键转换。
TypeScript
6.9K
4.5分

Exa Web Search
已认证
Exa MCP Server是一个为AI助手(如Claude)提供网络搜索功能的服务器,通过Exa AI搜索API实现实时、安全的网络信息获取。
TypeScript
2.0K
5分

Minimax MCP Server
MiniMax Model Context Protocol (MCP) 是一个官方服务器,支持与强大的文本转语音、视频/图像生成API交互,适用于多种客户端工具如Claude Desktop、Cursor等。
Python
1.1K
4.8分

Context7
Context7 MCP是一个为AI编程助手提供实时、版本特定文档和代码示例的服务,通过Model Context Protocol直接集成到提示中,解决LLM使用过时信息的问题。
TypeScript
5.6K
4.7分

Edgeone Pages MCP Server
EdgeOne Pages MCP是一个通过MCP协议快速部署HTML内容到EdgeOne Pages并获取公开URL的服务
TypeScript
408
4.8分

Baidu Map
已认证
百度地图MCP Server是国内首个兼容MCP协议的地图服务,提供地理编码、路线规划等10个标准化API接口,支持Python和Typescript快速接入,赋能智能体实现地图相关功能。
Python
969
4.5分