Simple MCP Build
What is MCP Framework?
The Model Context Protocol (MCP) Framework is a specialized tool designed for climate data analysis. It helps researchers and analysts process climate-related datasets through a structured pipeline, while maintaining context memory across executions.How to use MCP Framework?
The framework is executed through a simple command line interface after setting up the Python environment. Configuration is managed through YAML files, making it accessible even for non-programmers.Use Cases
Ideal for climate research teams needing to analyze temperature trends, run scenario projections, or process multiple climate datasets with consistent context tracking.Key Features
Dynamic Query RoutingAutomatically directs queries to appropriate processing modules based on content and context
Execution Context MemoryMaintains memory of previous executions for consistent analysis context
Modular ArchitectureEasy to extend with new analysis modules without modifying core framework
Configuration-DrivenPipeline behavior controlled through simple YAML configuration files
Pros and Cons
Advantages
Simplifies complex climate data analysis workflows
Maintains consistent context across multiple executions
Easy to configure without programming knowledge
Modular design allows for custom extensions
Limitations
Currently focused on climate data analysis (limited to specific use cases)
Requires Python environment setup
Limited documentation for advanced customization
Getting Started
Set up environment
Create and activate a Python virtual environment
Install dependencies
Install required Python packages
Configure pipeline
Edit the config.yaml file to specify datasets and processing steps
Run analysis
Execute the main pipeline
Example Use Cases
Temperature Trend AnalysisAnalyze historical temperature data to identify trends
Climate Scenario ProjectionRun future climate scenarios based on different models
Frequently Asked Questions
Do I need programming skills to use MCP?
Where can I find example configurations?
How do I add my own analysis models?
Additional Resources
GitHub Repository
Source code and issue tracking
Python Virtual Environments Guide
Official Python documentation on virtual environments
YAML Configuration Tutorial
Official YAML specification and examples
精選MCP服務推薦

Markdownify MCP
Markdownify是一個多功能文件轉換服務,支持將PDF、圖片、音頻等多種格式及網頁內容轉換為Markdown格式。
TypeScript
1.7K
5分

Baidu Map
已認證
百度地圖MCP Server是國內首個兼容MCP協議的地圖服務,提供地理編碼、路線規劃等10個標準化API接口,支持Python和Typescript快速接入,賦能智能體實現地圖相關功能。
Python
697
4.5分

Firecrawl MCP Server
Firecrawl MCP Server是一個集成Firecrawl網頁抓取能力的模型上下文協議服務器,提供豐富的網頁抓取、搜索和內容提取功能。
TypeScript
3.8K
5分

Sequential Thinking MCP Server
一個基於MCP協議的結構化思維服務器,通過定義思考階段幫助分解複雜問題並生成總結
Python
249
4.5分

Context7
Context7 MCP是一個為AI編程助手提供即時、版本特定文檔和代碼示例的服務,通過Model Context Protocol直接集成到提示中,解決LLM使用過時信息的問題。
TypeScript
5.2K
4.7分

Edgeone Pages MCP Server
EdgeOne Pages MCP是一個通過MCP協議快速部署HTML內容到EdgeOne Pages並獲取公開URL的服務
TypeScript
246
4.8分

Magic MCP
Magic Component Platform (MCP) 是一個AI驅動的UI組件生成工具,通過自然語言描述幫助開發者快速創建現代化UI組件,支持多種IDE集成。
JavaScript
1.7K
5分

Notion Api MCP
已認證
一個基於Python的MCP服務器,通過Notion API提供高級待辦事項管理和內容組織功能,實現AI模型與Notion的無縫集成。
Python
113
4.5分