G

Gooseteam

GooseTeam是一個AI代理協作平臺,通過MCP協議實現代理間的任務分配與消息管理,支持自然語言和流程圖兩種協議表達方式,並提供擴展工具集。
2.5分
59

What is GooseTeam MCP Server?

GooseTeam is a server that enables multiple AI agents to collaborate on tasks using the Model Context Protocol (MCP). It provides tools for agent registration, message management, and task coordination.

How to use GooseTeam?

1. Configure Goose CLI with the extension 2. Start the MCP server and inspector 3. Launch agents that follow the protocol 4. Monitor and interact through the inspector interface

Use Cases

Ideal for collaborative AI projects where multiple agents need to: - Divide and conquer complex tasks - Coordinate specialized roles - Maintain shared context and communication

Key Features

Agent ManagementRegister agents with unique IDs and colors, list active agents, and handle agent departures.
Message SystemSend, receive, and manage messages between agents with persistent storage.
Task CoordinationCreate, assign, and complete tasks with automatic role assignment (Project Coordinator).
Mermaid Protocol SupportBehavioral control through visual flowchart instructions using Mermaid markdown.

Pros and Cons

Advantages
Enables true multi-agent collaboration
Flexible protocol implementation (text or flowchart)
Visual monitoring through inspector interface
Language-agnostic MCP protocol
Limitations
Requires compatible LLM (currently only works well with certain models)
Setup requires multiple terminal sessions
Learning curve for protocol implementation

Getting Started

Install Dependencies
Clone the repository and install required packages.
Configure Goose CLI
Add the GooseTeam extension to your Goose configuration.
Start Services
Launch the server and inspector in separate terminals.
Launch Agents
Start agents that will connect to the server.

Usage Scenarios

Project CoordinationMultiple agents collaborate on a software development project
Research TeamAgents divide research topics and compile findings

Frequently Asked Questions

Why do my agents stop working after a few messages?
Can I use this with other agent platforms besides Goose?
How do I know if my agents are collaborating?

Additional Resources

MCP Specification
Complete Model Context Protocol documentation
Building a Team of AI Agents (Video)
Inspiration talk by Aaron Goldsmith
Goose CLI Documentation
Installation and usage guide for Goose
安裝
複製以下命令到你的Client進行配置
注意:您的密鑰屬於敏感信息,請勿與任何人分享。
精選MCP服務推薦
M
Markdownify MCP
Markdownify是一個多功能文件轉換服務,支持將PDF、圖片、音頻等多種格式及網頁內容轉換為Markdown格式。
TypeScript
1.7K
5分
B
Baidu Map
已認證
百度地圖MCP Server是國內首個兼容MCP協議的地圖服務,提供地理編碼、路線規劃等10個標準化API接口,支持Python和Typescript快速接入,賦能智能體實現地圖相關功能。
Python
697
4.5分
F
Firecrawl MCP Server
Firecrawl MCP Server是一個集成Firecrawl網頁抓取能力的模型上下文協議服務器,提供豐富的網頁抓取、搜索和內容提取功能。
TypeScript
3.8K
5分
S
Sequential Thinking MCP Server
一個基於MCP協議的結構化思維服務器,通過定義思考階段幫助分解複雜問題並生成總結
Python
249
4.5分
C
Context7
Context7 MCP是一個為AI編程助手提供即時、版本特定文檔和代碼示例的服務,通過Model Context Protocol直接集成到提示中,解決LLM使用過時信息的問題。
TypeScript
5.2K
4.7分
E
Edgeone Pages MCP Server
EdgeOne Pages MCP是一個通過MCP協議快速部署HTML內容到EdgeOne Pages並獲取公開URL的服務
TypeScript
246
4.8分
N
Notion Api MCP
已認證
一個基於Python的MCP服務器,通過Notion API提供高級待辦事項管理和內容組織功能,實現AI模型與Notion的無縫集成。
Python
113
4.5分
M
Magic MCP
Magic Component Platform (MCP) 是一個AI驅動的UI組件生成工具,通過自然語言描述幫助開發者快速創建現代化UI組件,支持多種IDE集成。
JavaScript
1.7K
5分
AIbase
智啟未來,您的人工智慧解決方案智庫
© 2025AIbase